含辐射和扁率的圆型限制性三体问题的轨道稳定性研究
作者:
作者单位:

(湖北民族大学信息工程学院恩施445000)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(11703005、11263003、11533004、11603072)和湖北民族大学博士启动基金项目(MY2018B015)资助


Research on the Stability of the Circular Restricted Three-body with Radiation and Oblateness
Author:
Affiliation:

( School of Information and Engineering, Hubei Minzu University, Enshi 445000)\)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于最小二乘法原理的速度因子方法是保流形结构算法中效率最高、稳定性最好、应用最广的方法. 利用速度因子方法讨论了主星为辐射源, 伴星为扁球的平面圆型限制性三体问题的稳定性问题. 数值研究表明: (1)仅考虑扁状摄动项时, 系统混沌运动的轨道数量会增多; (2)仅考虑辐射项时, 系统有序运动的轨道数量会增多; (3)同时存在辐射和扁状摄动时, 辐射占主导作用, 系统有序运动的几率会增加.

    Abstract:

    The velocity scaling method based on the least squares theory is considered to be the most efficient, stable, and widely used method among all manifold correction methods. The stability of the restricted three-body problem where the larger primary is a source of radiation and the smaller companion is an oblate spheroid is discussed by using the velocity scaling method. The numerical simulations suggest that (1) the number of the chaotic orbits is increasing if only the oblate spheroid perturbation is considered; (2) the number of the regular orbits will be increased if only considering the radiation part; (3) when both the radiation and oblate spheroid perturbation exist, the action of the radiation plays a dominant role, and the probability of orderly motion of the system will be increased.

    参考文献
    相似文献
    引证文献
引用本文

石绍伍,马大柱.含辐射和扁率的圆型限制性三体问题的轨道稳定性研究[J].天文学报,2019,60(3):33-43.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-03
  • 最后修改日期:2019-04-03
  • 录用日期:
  • 在线发布日期: 2019-09-02
  • 出版日期: