基于支持向量机的太阳磁场活动区极性反转线位置的探测
作者:
作者单位:

1.三峡大学计算机与信息学院宜昌443002;2.中国科学院国家天文台北京100101;3.中国科学院大学北京100049;4.中国科学院紫金山天文台南京210023)

作者简介:

通讯作者:

中图分类号:

基金项目:


Detection of Polarity Inversion Line Positions of Active Magnetic Field in Solar Magnetograms Based on Support Vector Machine
Author:
Affiliation:

1. School of Computer and Information, China Three Gorges University, Yichang 443002;2. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101;3. University of Chinese Academy of Sciences, Beijing 100049;4. Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023;

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    太阳磁场的极性反转线(Polarity Inversion Line, PIL)是研究太阳活动、分析太阳磁场结构演变和预测太阳耀斑最重要的日面特征之一. 磁场极性反转的位置是太阳耀斑和暗条可能出现的位置. ``先进天基太阳天文台(ASO-S)'是中国首颗空间太阳专用观测卫星, 其搭载的``全日面矢量磁像仪(Full-Disk Vector Magnetograph, FMG)'主要任务是探测高空间、高时间分辨率的全日面矢量磁场. 为了提高观测数据使用效率、快速监测太阳活动水平、提高太阳耀斑与日冕物质抛射的预报水平以及更好地服务于FMG数据处理与分析系统, 采用了图像自动识别与处理技术, 更加精确有效地检测极性反转线. 从支持向量机(Support Vector Machine, SVM)的模型出发, 将极性反转线位置的探测问题转化为一个模式识别中的二分类问题, 提出了一种基于支持向量机的极性反转线检测算法, 自动探测与识别太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁成像仪(Helioseismic and Magnetic Imager, HMI)磁图的极性反转线位置. 与现有算法的对比结果表明, 此算法可以精确直观地检测太阳活动区的极性反转线.

    Abstract:

    The Polarity Inversion Line (PIL) of solar magnetic field is one of the most important features on the solar surface for studying solar activities, analyzing the field structural evolution, and predicting solar flares. The PILs are the locations where solar flares and dark filaments may occur. The Advanced Space-based Solar Astronomical Observatory (ASO-S) is the first space satellite for solar observations in China. The Full-Disc Vector Magnetograph (FMG) onboard it is used mainly to detect full-disk solar vector magnetic fields with both high spatial and temporal resolutions. In order to improve the efficiency of data processing and better monitor solar activities, we develop one automatic image recognition and processing technology to detect the PILs. It bases on the support vector machine (SVM) model that converts the PIL detection into a binary classification problem in pattern recognition. The algorithm was tested on the vector magnetograms of the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). Compared with a more commonly used algorithm, our results show that it can detect the PIL of active regions more accurately and intuitively.

    参考文献
    相似文献
    引证文献
引用本文

王强,郑胜,邓元勇,黄宇,黎辉,甘为群,苏江涛.基于支持向量机的太阳磁场活动区极性反转线位置的探测[J].天文学报,2020,(4):107-114.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-07-30
  • 出版日期: