遗传算法优化的BP神经网络卫星钟差预报
作者:
作者单位:

1.中国科学院大学地球与行星科学学院北京100049;2.西安邮电大学通信与信息工程学院西安710061)

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41474086)资助


Genetic Algorithm Optimization in the Prediction of Satellite Clock Bias by BP Neural Network
Author:
Affiliation:

1. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049;2. School of Communications and Information Engineering, Xián University of Posts & Telecommunications, Xián 710061;

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对BP (Back Propagation)神经网络模型预测卫星钟差中权值和阈值的最优化问题, 提出了基于遗传算法优化的BP神经网络卫星钟差短期预报模型, 给出了遗传算法优化BP神经网络的基本思想、具体方法和实施步骤. 为验证该优化模型的有效性和可行性, 利用北斗卫星导航系统(BeiDou navigation satellite system, BDS)卫星钟差数据进行钟差预报精度分析, 并将其与灰色模型(GM(1,1))和BP神经网络模型预报的结果比较分析. 结果表明: 该模型在短期钟差预报中具有较好的精度, 优于GM(1,1)模型和BP神经网络模型.

    Abstract:

    Aiming at the optimization problem of the weight and the threshold value in the prediction of satellite clock bias by BP (Back Propagation) neural network model, a short-term prediction model of satellite clock bias based on genetic algorithm is proposed, the basic idea, the specific method, and the implementation steps of genetic algorithm optimization of BP neural network are presented. In order to verify the validity and feasibility of the optimization model, the accuracy of clock bias prediction is analyzed by using the data of BDS (BeiDou navigation satellite system) satellite clock bias, and the prediction precisions are compared with the GM(1,1) (Grey Model(1,1)) and BP neural network model. The results show that the prediction precision for the proposed method is better than those for the GM(1,1) and BP neural network models.

    参考文献
    相似文献
    引证文献
引用本文

孙鹏超,魏东平,孙碧娟.遗传算法优化的BP神经网络卫星钟差预报[J].天文学报,2020,61(6):67. SUN Peng-chao, WEI Dong-ping, SUN Bi-juan. Genetic Algorithm Optimization in the Prediction of Satellite Clock Bias by BP Neural Network[J]. Acta Astronomica Sinica,2020,61(6):67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-12-04
  • 出版日期: