基于EVSC无监督特征选择与MIMO-BP神经网络预测射电望远镜背架温度场分布
作者:
作者单位:

1. 中国科学院新疆天文台 乌鲁木齐 830011;2. 中国科学院大学 北京 100049;3. 中国科学院射电天文重点实验室 乌鲁木齐 830011;4. 新疆射电天体物理实验室 乌鲁木齐 830011;5. 陕西省天线与控制技术重点实验室 西安 710065

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(12273102)、国家重点研发计划(2021YFC2203601)、中国科学院青年创新促进会(Y202019)、中国科学院天文台站设备更新及重大仪器设备运行专项、中国科学院科研仪器设备研制项目(PTYQ2022YZZD01)、陕西省天线与控制技术重点实验室开放基金项目资助


Predicting the Temperature Field Distribution of Radio Telescope Back-Up Structure on EVSC Unsupervised Feature Selection and MIMO-BP Neural Network
Author:
Affiliation:

1. Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011;2. University of Chinese Academy of Sciences, Beijing 100049;3. Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi 830011;4. Key Laboratory of Xinjiang Radio Astrophysics, Urumqi 830011;5. Shaanxi Key Laboratory of Antenna and Control Technology, Xián 710065;

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    背架受非均匀温度影响是造成射电望远镜天线主反射面精度下降的重要因素之一. 工作于野外的天线由于背架拓扑结构复杂导致杆件间相互存在遮挡、热传导、热辐射等, 使得背架结构温度场难以通过热力学仿真来准确获取与预测. 通过在南山26m射电望远镜天线背架上布设测温传感器, 得到天线背架温度数据集, 利用3种不同的无监督特征选择方法从66个测温点选出16个温度敏感点, 再将3组不同的温度敏感点集作为输入, 使用多输入多输出的BP (Back Propagation)神经网络模型训练输出对应的66个测温点的预测温度值, 通过插值算法实现背架全域连续点的温度预测. 经计算对比分析得出采用基于特征值敏感准则无监督特征选择方法选取测温敏感点效果最佳, 结合BP神经网络与Barnes插值算法实现了仅用16个实测温度点预测南山26m射电望远镜天线背架全域连续点的温度场分布, 预测均方根误差约为0.707 \circC. 研究成果为大口径射电望远镜天线背架结构温度采集点的布置、温度场的获取及预测提供一种可选方法.

    Abstract:

    The influence of non-uniform temperature on the back-up structure (BUS) is one of the important factors that causes the accuracy of the main reflector of the radio telescope antenna to decrease. Due to the complex topological structure of the BUS, there are shielding, heat conduction and heat radiation among the rods, which makes the temperature field of the BUS difficult to be accurately obtained and predicted by thermodynamic simulation. In this study, temperature sensors were installed on the BUS of Nanshan 26-meter radio telescope (NSRT) to obtain the BUS temperature data set. Three different unsupervised feature selection (UFS) methods were used to select 16 temperature sensitive points from 66 temperature measurement points, and then these three different sets of temperature sensitive points were used as inputs. MIMO-BP (Multiple Input and Multiple Output - Back Propagation) neural network model is used to train the predicted temperature values of 66 points corresponding to the output, and then the temperature prediction of global continuous points on the BUS is realized by interpolation algorithm. Through calculation and comparative analysis, it is concluded that the unsupervised feature selection method based on eigenvalue sensitive criterion (EVSC) has the best effect on selecting temperature sensitive points. Combined with the BP neural network and Barnes interpolation algorithm, only 16 measured temperature points are used to predict the temperature field distribution of global continuous points on the NSRT's BUS. The root-mean-square error (RMSE) of the predicted value is about 0.707 \circC. The research result provides an alternative method for the arrangement of temperature collection points and the acquisition and prediction of temperature field in the BUS of large aperture radio telescope.

    参考文献
    相似文献
    引证文献
引用本文

张世交,许谦,王惠,薛飞,曹晓曼.基于EVSC无监督特征选择与MIMO-BP神经网络预测射电望远镜背架温度场分布[J].天文学报,2025,(1):2. ZHANG Shi-jiao, XU Qian, WANG Hui, XUE Fei, CAO Xiao-man. Predicting the Temperature Field Distribution of Radio Telescope Back-Up Structure on EVSC Unsupervised Feature Selection and MIMO-BP Neural Network[J]. Acta Astronomica Sinica,2025,(1):2.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-24
  • 出版日期: